◎研究方向 1.非线性泛函分析 2.非线性偏微分方程 ◎学习与工作经历 2002.9-2006.7,山东大学,数学与应用数学专业学士; 2006.9-2011.6,山东大学,基础数学专业博士; 2011.7-2013.7,清华大学,数学专业博士后流动站师资博士后; 2013.7-2018.12,必赢线路检测3003(华东),必赢线路检测3003计算数学,讲师; 2019.1至今,必赢线路检测3003(华东),必赢线路检测3003计算数学系,副教授。
◎主讲课程 1.主讲本科生必修课《数学分析》、《实变函数》、《计算方法》等课程。 2.主讲研究生《泛函分析》、《变分方法》等课程。
◎指导研究生 累计指导硕士研究生3名。
◎承担和参与项目 1.近年来,主持的代表性科研项目: (1)变分方法对若干重要椭圆方程的应用研究,山东省自然科学基金面上项目,2024-2026。 (2)非线性Kirchhoff方程及其相关问题的研究,自主创新科研计划项目,2019-2021。 (3)非线性Klein-Gordon-Maxwell方程及其相关问题的研究,国家自然科学基金青年基金,2015-2017。
非线性薛定谔方程的理论研究,自主创新科研计划项目,2016-2018。 (4)非线性薛定谔泊松方程的理论研究,自主创新科研计划项目,2014-2015。 2.近年来,参与的代表性科研项目: (1)带概周期强迫项的Schrodinger方程和梁方程的概周期解,国家自然科学基金青年基金,2016-2018。 (2)与Bose-Einstein凝聚方程相关的非线性椭圆系统的研究,国家自然科学基金面上项目,2014-2017。 (3)非线性分析及在偏微分方程中的应用,国家自然科学基金面上项目,2010-2012。 ◎获奖情况(除教师个人获奖之外,还包含指导学生获奖情况) 指导大学生数学竞赛获山东省一等奖,省部级,2022年。
◎荣誉称号(除教师个人获得荣誉之外,还包括指导学生获得荣誉情况) 青岛西海岸新区首批紧缺人才,2014年。
◎论文 1.第一作者主要论文: (1)Jian Zhang, Xue Bao, Jianjun Zhang, Existence and concentration of solutions to Kirchhoff-type equations in R2 with steep potential well vanishing at infinity and exponential critical nonlinearities, Advances in Nonlinear Analysis, 2023, 12: 20220317, SCI.
(2)Jian Zhang, Huize Liu, Jiabin Zuo, High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition, Advances in Nonlinear Analysis, 12(2023), 20220311, SCI. (3)Jian Zhang, Huize Liu, Xue Bao, Bound state solutions for Kirchhoff type equations in dimension two, Journal of Mathematical Analysis and Applications, 2022, 507: 125796, SCI. (4)Jian Zhang, Zhenluo Lou, Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth, Journal of Mathematical Physics, 2021, 62: 011506, SCI. (5)Jian Zhang, The existence of least energy and high energy solutions to the Kirchhoff type problem in high dimensions, Journal of Mathematical Analysis and Applications, 2021,503: 125294, SCI. (6)Jian Zhang, Weiran Lu, Zhenluo Lou, Multiplicity and concentration behavior of solutions of the critical Choquard equation, Applicable Analysis, 2021, 100: 167-190, SCI. (7)Jian Zhang, Jichao Wang, Yanju Ji, The critical fractional Schrodinger equation with a small superlinear term, Nonlinear Analysis: Real World Applications, 2019, 45: 200-225, SCI. (8)Jian Zhang, Zhenluo Lou, Yanju Ji, Wei Shao, Multiplicity of solutions of the bi-harmonic Schrodinger equation with critical growth, Zeitschrift fur angewandte Mathematik und Physik, 2018, 69: 42, SCI. (9)Jian Zhang, Zhenluo Lou, Yanju Ji, Wei Shao, Ground state of Kirchhoff type fractional Schrodinger equations with critical growth, Journal of Mathematical Analysis and Applications, 2018, 462: 57-83, SCI. (10)Jian Zhang, Wenming Zou, Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem, Zeitschrift fur angewandte Mathematik und Physik, 2017, 68: 57, SCI. (11)Jian Zhang, Solutions to the critical Klein-Gordon-Maxwell system with external potential, Journal of Mathematical Analysis and Applications, 2017, 455: 1152-1177, SCI. (12)Jian Zhang, Yanju Ji, The existence of nontrivial solutions for the critical Kirchhoff type problem in RN, Computers and Mathematics with Applications, 2017, 74: 3080-3094, SCI. (13)Jian Zhang, Ground state and multiple solutions for Schrodinger-Poisson equations with critical nonlinearity, Journal of Mathematical Analysis and Applications, 2016, 440: 466-482, SCI. (14)Jian Zhang, The Kirchhoff type Schrodinger problem with critical growth, Nonlinear Analysis: Real World Applications, 2016, 28: 153-170, SCI. (15)Jian Zhang, The critical Neumann problem of Kirchhoff type, Applied Mathematics and Computation, 2016, 274: 519-530, SCI. (16)Jian Zhang, On ground state and nodal solutions of Schrodinger-Poisson equations with critical growth, Journal of Mathematical Analysis and Applications, 2015, 428: 387-404, SCI. (17)Jian Zhang, On the Schrodinger equations with a nonlinearity in the critical growth, Topological Methods in Nonlinear Analysis, 2014, 44: 457-469, SCI. (18)Jian Zhang, Wenming Zou, The Critical Case for a Berestycki-Lions Theorem, SCIENCE CHINA Mathematics, 2014, 57: 541-555, SCI. (19)Jian Zhang, On ground state solutions for quasilinear elliptic equations with a general nonlinearity in the critical growth, Journal of Mathematical Analysis and Applications, 2013, 401: 232-241, SCI. (20)Jian Zhang, On the Schrodinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75: 6391-6401, SCI. (21)Jian Zhang, Zhongli Wei, Existence of multiple positive solutions to singular elliptic systems involving critical exponents, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75: 559-573, SCI. (22)Jian Zhang, Zhongli Wei, Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems, Nonlinear Analysis: Theory, Methods & Applications, 2011, 74: 7474-7485, SCI. (23)Jian Zhang, Zhongli Wei, Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin, Journal of Mathematical Analysis and Applications, 2011, 383: 291-306, SCI. 2.第二作者(通讯作者)主要论文: (1)Xinyi Zhang, Jian Zhang, On Schrodinger-Poisson equations with a critical nonlocal term, AIMS Mathematics, 2024, 9: 11122-11138, SCI. (2)Jichao Wang, Jian Zhang, Yujun Cui, Multiple solutions to the Kirchhoff fractional equation involving Hardy-Littlewood-Sobolev critical exponent, Boundary Value Problems, 2019, 124, SCI. ◎学术兼职 美国数学会Mathematical Reviews评论员。 |